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I. EVOLUTIONARY ACTIVE VISION APPROACH

Due to lack of space in the main paper, we present a
more detailed review of works using embodied neural network
controllers with active vision properties in this supplementary
document. One of the pioneering works in the use of artificial
evolution to develop situated active robotic vision systems
is [1]. In this study, a robot suspended from a gantry frame
has stepper motors that allow translational movement in the
X and Y directions, and a CCD camera pointing down at a
mirror inclined at 45◦ to the vertical. The task of the robot is
to distinguish a white isosceles triangle from a white rectangle
fixed to one of the black gantry walls by navigating towards
the triangle. The contribution of this study is in showing the
significance of the movement of the robot in carrying out
the discrimination task. The work described in [2] explores
the possibility of evolving neuro-controllers for mobile robots
that can use their visual perception to perform tasks which
are difficult or impossible using only proximal sensing. The
task chosen is to move to the center of a cylindrical arena, and
stay there. The authors show that relatively small non-modular
neural network controllers that process low pixel resolution
images, can compensate for this deficiency by generating
the actions that bring forth the most informative sensory
stimulation, which in turn is used to generate task-effective
actions.

Experiments to solve a perceptual task (differentiating be-
tween a rectangle and triangle) were also carried out in [3],
with a network having only nine cells as its visual input or
“retina”. The network however had additional feedback units,
which gave it the ability to zoom in and out of the image
plane. It was also able to control the filtering strategy used
to reduce pixels into the final nine values that were fed into
the input layer. Thus each input neuron corresponded to an
area on the image plane, the size of which was determined
by the network’s output neuron. A regular feed-forward neural
network which remained static and considered the entire image
plane in its input vector was also tried to solve the same
task. The network was trained using back-propagation under
different configurations (number of hidden layers, learning
rate and momentum of the gradient descent algorithm). The
results showed that under no circumstances could this “static”
network succeed in the task of differentiating between tri-
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angular and rectangular shapes, despite its higher resolution
visual receptive field. The robots were required to carry out
vision based collision avoidance. The results of this work
indicate that, as it is the case with biological agents (e.g.,
the “Kitten in the Gondol” experiment mentioned earlier),
neural networks with active body movement out-performed
their “passive” counterparts. The difference in development
of neural networks receptive fields under active and pas-
sive vision conditions is further explored by the same lab
(Laboratory of Intelligent Systems, Swiss Federal Institute of
Technology (EPFL)) in [4] and [5]. In both cases, a recurrent
neural network (with hidden units) was evolved to control a
mobile robot required to travel collision-free in a walled arena.
Networks were evolved for maintaining a straight trajectory
during the trial. The network had a feedback unit similar to
that in [3] controlling the filtering strategy (i.e., which pixels
of the raw image are combined to form the final input vector).
The network outputs are also used to set the pan and tilt
camera orientation, as well as the speed of the robot wheels.
In [4], it is shown that a network evolved in a simulated
environment with active vision capabilities (and then ported
to the robot) develops sensitivity to a different set of features
as compared to a network which is developed by training
on static snapshot images of the operational environment.
Indeed, as mentioned in [6], neural networks with active vision
capabilities develop sensitivity to fewer but more important
features in the environment and successfully carry out tasks
by maintaining a fix on them. In [5] the importance of
active body control for the development of visual systems in
neural networks evolved to control mobile robots is further
demonstrated. A neural network controller was evolved for
the same navigation task described in [4], and two sets of
experiments were carried out. In one set an online learning rule
(Hebbian plasticity) was applied and the weights of the neural
network controller were updated as the network moved in the
environment. In the other trials, the weights were also updated,
but the robot was only free to move its camera (through pan
and tilt outputs), not its body (motor outputs were ignored).
After a number of iterations the learning was stopped and
the networks with restricted movements were free to move.
It was observed that only networks that had retained active
body movement during the learning updates could complete
the task successfully, while those that were unable to move the
robot were unable to carry out the navigation task and avoid
colliding with the arena walls.

Besides active vision abilities, it is also important to



consider the effect of neural networks which can integrate
information over time (recurrent networks) as opposed to being
completely reactive (regular feed-forward). This is investigated
in [7], where a recurrent network (similar to the architecture
described in [4] and [5]) was required to differentiate between
two patterns and to navigate a mobile robot to a goal destina-
tion based on the pattern discrimination task. The two patterns
were on opposing walls, while the network’s visual receptive
field was too small to distinguish one from the other instantly
in one update cycle. The network was able to solve the task
by scanning the walls, sequentially searching for features and
integrating this information to identify larger patterns. Based
on these principles, it was demonstrated in [8] that complex
machine vision tasks such as automatic driving and indoor
navigation could be solved by simple low-resolution artificial
neural network controllers when implemented as integrated
action-perception control systems wherein information from
one update cycle is retained to influence subsequent outputs.
The automatic driving task consisted of a network driving a
car in different courses in simulated mountain roads. Results
indicated that the best evolved networks performed as well as
or better than human drivers tested on this virtual platform.
Similar to other experiments, this relatively simple network
with active vision capabilities was able to successfully navi-
gate these roads and even carry out sharp manoeuvres at bends
by focusing on and maintaining a fix on one simple feature
(such as the far edge of the road).

II. TESTING SEGNET

Convolutional neural networks trained on large datasets
have outperformed other ‘algorithmic’ methods on several
computer vision benchmark problems like ImageNet, MNIST
etc. There have been a number of works mentioned in Section
II of the main paper which have implemented them for road-
detection. However, from our review there has been yet to
be an implementation that has been proved to be applicable
for the entire range of environments/scenarios that are to be
encountered in the real world. [9] is one such recent implemen-
tation wherein the network produces pixel-wise segmentation
of the input image. Pixels are classified into a variety of
categories such as road, trees etc. The system was successfully
evaluated for urban city environments. We tested the network
on a few sample images representing more unstructured non-
road scenes. The segmented output produced by the network is
presented in figure 1. As can be seen from the figure, the output
images have such a large number of incorrectly segmented
pixels, that it could not be reliably used to steer a self-driving
robot.

III. ADDITIONAL METHODOLOGICAL DETAILS

Figure 2 shows the architecture of the neural network
controller. Output neurons number 32 and 33 (see figure 2)
control the left motor and neurons 34 and 35 control the
right motor. Outputs 36, 37 and 38 regulate the dynamic
colour mixing properties of the network. Table I shows the
colour distribution properties for textures used to render the 12
evolution environments. Snapshots of these environments are

Fig. 2. The neural network. The lines indicate the efferent connections for
only one neuron of each layer. Each hidden neuron receives an afferent
connection from each input neuron and from each hidden neuron, including
a self-connection. Each output neuron receives an afferent connection from
each hidden neuron.

Fig. 3. Fitness graph for best evolutionary run. Green indicates the best, blue
the average and red the lowest fitness in a generation.

(a) (b)
Fig. 5. Views from the ’virtual robot’ looking at the road in simulation scenes
and the corresponding input vector after the dynamic colour feedback has been
applied to the raw image. Column (a) corresponds to scene 2 and column (b)
corresponds to scene 7 (see table I).

shown in figure 4. The effect of the network’s dynamic colour
perception is shown in figure 5. Figure 6 shows examples of



(a) (b)
Fig. 1. The top row shows three images of environments where we conducted the experiments described in this study. The bottom row shows the correspond-
ing pixel wise classification of the road images using the deep convolution neural network described in [9]. Purple pixels (which are almost entirely absent
for 1.a and 1.b) correspond to the ‘road’ category.

TABLE I
R,G,B COLOUR DISTRIBUTION OF TEXTURES USED IN CREATING ROAD SCENES. ‘R’ INDICATES UNIFORM RANDOM DISTRIBUTION IN 0–255.

Scene
Road Non-Road

Red Green Blue Red Green Blue
Avg Sd Avg Sd Avg Sd Avg Sd Avg Sd Avg Sd

1 57.4 1.5 R R R R 207.4 1.6 R R R R
2 207.4 1.6 R R R R 57.4 1.5 R R R R
3 R R 29.0 6.3 R R R R 179.0 6.3 R R
4 R R 179.0 6.3 R R R R 29.0 6.3 R R
5 R R R R 47.2 4.1 R R R R 197.2 4.1
6 R R R R 197.2 4.1 R R R R 47.2 4.1
7 59.9 20.8 173.4 21.5 R R 178.5 20.4 53.4 21.3 10 10
8 178.5 20.4 53.4 21.3 R R 59.9 20.8 173.4 21.5 R R
9 56.4 21.9 R R 168.2 21.7 178.8 21.9 R R 59.6 20.0

10 178.8 21.9 R R 59.6 20.0 56.4 21.9 R R 168.2 21.7
11 R R 185.9 25.7 65.3 25.0 R R 66.3 26.1 185.9 24.8
12 R R 66.3 26.1 185.9 24.8 R R 185.9 25.7 65.3 25.0

rendered scenes used in Test 5 (see Table 1 in main paper) to
test the effect of bright spotlights and shadows.

(a) (b)
Fig. 6. Images of simulated environments used in Test 5, in which the scenes
presents (a) shadows, (b) bright spots. See main paper for further information.

IV. SUPPLEMENTARY RESULTS

Videos of the controller performing in outdoor and vir-
tual environments are available to view/download from
the following link https://www.aber.ac.uk/en/cs/research/ir/dss/

TABLE II
TABLE SHOWING THE RELATIVE PERFORMANCE IN TEST 1 OF THE

DYNAMIC COLOUR MIXING NEURAL NETWORK PROPOSED BY THIS PAPER.
IT IS COMPARED TO A CTRNN USING INPUTS WHEN THE DYNAMIC
COLOUR-MIXING IS BYPASSED AND HIGH/LOW CONTRAST COLOUR

CHANNELS ARE FED THROUGH.

Network Colour Input Percentage
Successful Trials

CTRNN
3 Layers

RGB
(Dynamic Mixing) 57.0

CTRNN
3 Layers

RGB
(Highest Contrast forced) 41.5

CTRNN
3 Layers

RGB
(Lowest Contrast forced) 35.5

#road-driving. To further demonstrate that the controller’s
color perception system is integral to for it’s ability to navigate
and not simply a by-product of the artificial evolution, we
consider the network using the RGB color model but with the
feed-back from it’s color outputs ignored. Instead based on
analysis of the color-properties of the textures used to render
scenes in Test 1 (see main paper section IV), we know the
color channel carrying the highest/lowest contrast level for a

https://www.aber.ac.uk/en/cs/research/ir/dss/#road-driving
https://www.aber.ac.uk/en/cs/research/ir/dss/#road-driving


Fig. 4. Snapshots of the 12 virtual evolution environments. The colour distribution properties of the textures used to render these are described in table I.

Fig. 7. Outdoor environments. The black line refers to the robot’s trajectory, green dot the starting position and red dot the end position of the trial. Images
in the topmost, middle and bottom rows correspond to trials carried out with the ASH, USH and BUV colour models (respectively).

particular environment. We feed the relevant highest/lowest
contrast channel to the network for all the trials instead and
cut-off the network’s color perception feed-back. From the
results it can be seen that the network performs the best (57.0
% success) when it’s feedback properties are not interfered
with. Receiving the highest possible contrast values as it’s final
input vector deteriorates the performance to 41.5 %.

TABLE III
CENTROIDS OF THE THREE CLUSTERS RESULTING FROM THE MEAN-SHIFT

SORTING ALGORITHM. VALUES IN THE CELLS ARE THE PERCENTAGE OF
TIME EACH COLOR PARAMETER IS EITHER BELOW THE LOW THRESHOLD

OF 0.2, OR ABOVE THE HIGH THRESHOLD OF 0.8.

Percentages (%)
Cluster ρ > 0.8 ρ < 0.2 γ > 0.8 γ < 0.2 β > 0.8 β < 0.2

one 17.8 81.1 59.3 39.8 21.1 77.3
two 5.6 94.0 88.2 10.9 5.1 94.0

three 21.6 77.3 41.3 58.3 35.7 63.0

In the main paper, section IV.C deals with analysing the
system’s mechanisms that enable it to achieve adaptability to
different environments. A piece of analysis that we carried out
dealt with capturing activations of the three colour parameters
ρ , γ , and β for all outdoor trials (carried out with the USH

colour model). The activations for each of the 50 trials were
compressed into 6 dimensional points. The points represented
how many iterations ρ , γ , and β were above a high (0.8) and
low (0.2) threshold. These points were then fed into an un-
supervised clustering algorithm (mean-shift), which separated
the points into three clusters as shown in table IV. These 50
points plotted in each dimension are shown in figure 8.
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Fig. 8. Components of the 6-dimensional points considered for clustering.
Points in red, blue and green correspond to clusters one, two and three,
respectively (also see Table IV).
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Fig. 9. To play the video, click on the image or use the following URL https://www.youtube.com/embed/EtgPU-mwn94. This video shows the ’evolved’
neural network controlling the Pioneer 3-AT robot in ’Path 1’ using the ’USH’ colour model (refer to paper).

Fig. 10. To play the video, click on the image or use the following URL https://www.youtube.com/embed/6XBtsxax5xk. This video shows the ’evolved’
neural network controlling the Pioneer 3-AT robot in ’Path 2’ using the ’USH’ colour model (refer to paper).

Fig. 11. To play the video, click on the image or use the following URL https://www.youtube.com/embed/MKvPLvQHcbM. This video shows the ’evolved’
neural network controlling the Pioneer 3-AT robot in ’Path 3’ using the ’USH’ colour model (refer to paper).

https://www.youtube.com/embed/EtgPU-mwn94
https://www.youtube.com/embed/EtgPU-mwn94
https://www.youtube.com/embed/6XBtsxax5xk
https://www.youtube.com/embed/6XBtsxax5xk
https://www.youtube.com/embed/MKvPLvQHcbM
https://www.youtube.com/embed/MKvPLvQHcbM


Fig. 12. To play the video, click on the image or use the following URL https://www.youtube.com/embed/hyr5J47V w0. This video shows the ’evolved’
neural network controlling the Pioneer 3-AT robot in ’Path 4’ using the ’USH’ colour model (refer to paper).

Fig. 13. To play the video, click on the image or use the following URL https://www.youtube.com/embed/Mhki09BN0YM. This video shows the ’evolved’
neural network controlling the Pioneer 3-AT robot in ’Path 5’ using the ’USH’ colour model (refer to paper).

Fig. 14. To play the video, click on the image or use the following URL https://www.youtube.com/embed/wn6YvTwEWCQ. This videos shows an ’evolved’
neural network controller navigating different virtual simulated road environments.

https://www.youtube.com/embed/hyr5J47V_w0
https://www.youtube.com/embed/hyr5J47V_w0
https://www.youtube.com/embed/Mhki09BN0YM
https://www.youtube.com/embed/Mhki09BN0YM
https://www.youtube.com/embed/wn6YvTwEWCQ
https://www.youtube.com/embed/wn6YvTwEWCQ
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